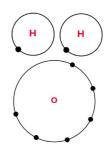
Ist Wasser eine Ionenverbindung?

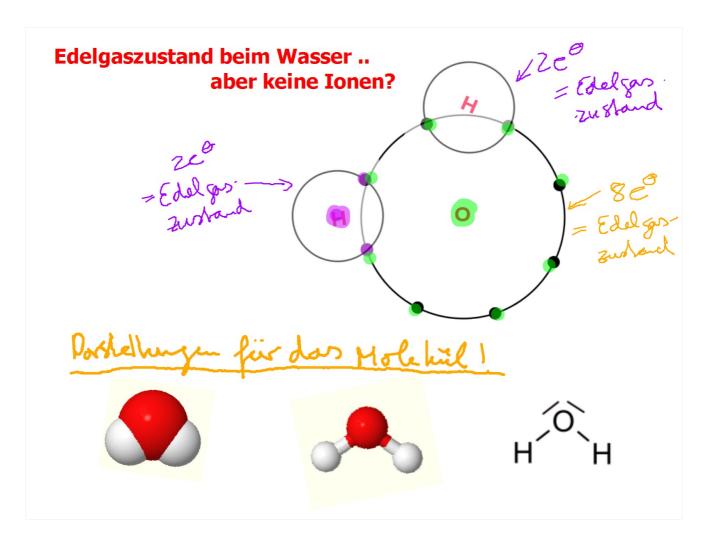

 H_2O

Wie würde die Reaktion bei der Bildung von Wasser ablaufen?

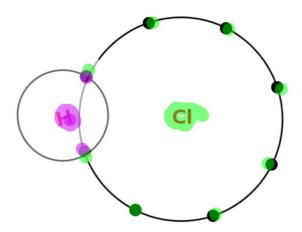
Bildung der Ionen

2 H → 2 H
$$^{\oplus}$$
+ 2 e $^{\ominus}$
O + 2e $^{\ominus}$ → O^{2 \ominus}
Gitterbildung

$$2 H^{\oplus} + O^{2\Theta} \rightarrow H_2O$$


Wenn Wasser eine Ionenverbindung ist, ...

- müsste es die typischen Eigenschaften einer Ionenverbindung haben wie zum Beispiel ...
- hohe Schmelz- und Siedetemperaturen.


also ...

Wasser kann keine Ionenverbindung sein!

Weitere Beispiele für Atomverbindungen:

Salzsäure-Gas HCl

Der Edelgaszustand wird hir nicht erreicht, indem Elektronen aufgenommen bzw. abgegeben werden ... sondern indem sich die Schalen überlagern und so Elektronen gemeinsam genutzt werden.

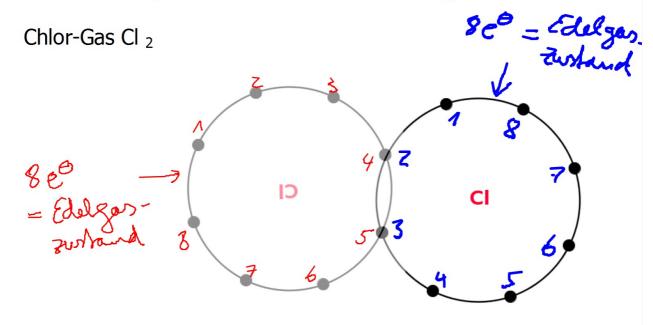
Arten von Verbindungen:

Verbindungen aus Ionen ⇒ **Ionenbindung**

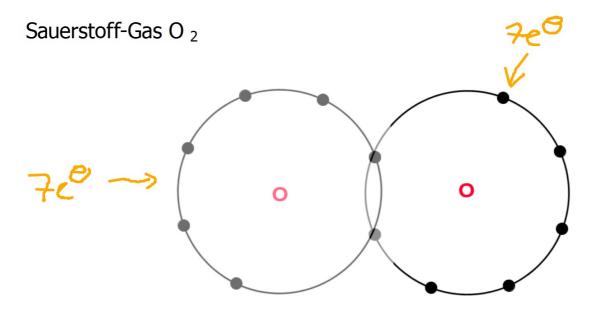
- → Edelgaszustand durch Elektronenübergabe
- → Ionengitter
- → Feststoffe

Verbindungen aus Atomen ⇒ **Atombindung**

- ightarrow Edelgaszustand durch gemeinsame Elektronenbenutzung
- → Einheiten zusammenhängender Atome = Moleküle
- → meist flüssige und gasförmige Stoffe


Bindungs - Typ = Art des Zusammenhalt

→ bestimmt die Eigenschaften der Verbindungen

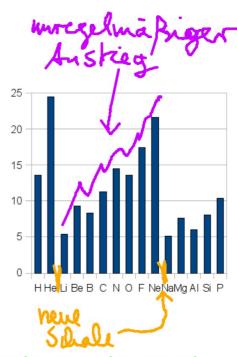

Vergleich der **Siedetemperaturen** von Stoffen mit **Ionenbindung** und **Atombindung**

Ionenverbindungen		Molekülverbindungen	
Kochsalz NaCl	1465 °C	Wasser H ₂ O	100°C
Natriumfluorid NaF	1704 °C	Salzsäure-Gas HCl	- 85°C
Al_2O_3	2980 °C	Ammoniak NH ₃	- 33 °C
Rubidiumchlorid	1390 °C	Chlorgas Cl ₂	-34,6 °C
•••		Sauerstoff O ₂	- 183 °C
		Stickstoff N ₂	- 196°C
•••		Kohlendioxid CO _{2 (Smt.)}	- 57 °C

Weitere Beispiele für Atomverbindungen:

Weitere Beispiele für Atomverbindungen:

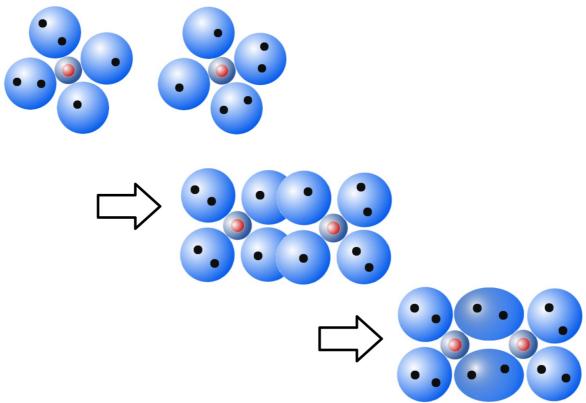
Fazit: Das Schalenmodell ermöglicht es nicht, alle Moleküle erklären zu können!

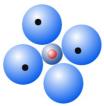

Fehler

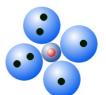
... in der Idee der Bindung? ... im Schalenmodell?

... im Schalenmodell?

Blick zurück zur Ionisierungsenergie:


Die Ionsierungsenergie zeigt Unregelmäßigkeiten beim Anstieg!




Die Schale muss unterteilt sein, damit sich die Unregelmäßigkeit erklären lässt.

Atombindung beim Sauerstoff-Molekül im Kugelwolkenmodell:

Das Kugelwolkenmodell

