Das Teilchenmodell und die Schmelz- und Siedetemperatur für Fortgeschrittene

Aus Chemie digital
Wechseln zu: Navigation, Suche

Das wir und die ganze Materie um uns herum nicht aus einem kontinuierlichen Material bestehen, wie es ganz früher in der Antike und teilweise auch von Kinder gesehen wird, sollte inzwischen jedem klar sein. Natürlich fällt einem sofort das "Atom" ein, denn alles um uns herum besteht aus Atomen. Wenn wir in der Chemie von Teilchen sprechen, sind aber nicht immer die Atome gemeint. Denn wenn wir alles aus Atomen besteht stellt sich die Frage, warum sich die Stoffe so verschieden verhalten.

Tatsächlich sind die "Teilchen" die wir in der Chemie betrachten verschiedene Teilchen, die zwar auch einzelne Atome sein können oder aber auch zusammengesetzte Teilchen wie Moleküle oder geladene Teilchen wie Ionen. In vielen Fällen reicht es aus, sich ein einfaches Teilchenmodell vorzustellen, wobei zunächst unwichtig ist, was für eine Art von Teilchen es genau ist.

Das einfache Teilchenmodell

Für dieses einfache Teilchenmodell gelten folgende Regeln:

Grundregeln zum Teilchenmodell:
  • Alle Stoffe bestehen aus kleinsten Teilchen und zwischen den Teilchen ist leerer Raum.
  • Die Teilchen verschiedener Stoffe unterscheiden sich in Größe und Masse.
  • Alle Teilchen sind ständig in Bewegung. Je höher die Temperatur, desto schneller bewegen sich die Teilchen.
  • Zwischen den Teilchen gibt es Anziehungskräfte, die bei verschiedenen Stoffen unterschiedlich stark ist.


Wenn man diese Eigenschaften betrachtet, so sollte man sich klar machen, dass wir hier quasi Reinstoffe betrachten. Der Reinstoff Sauerstoff enthält eben nur eine Sorte von Teilchen (hier ein zweiatomiges Molekül). Andere Teilchen gibt es in dem Reinstoff nicht und dementsprechend gibt es zwischen den Sauerstoffteilchen keine andere Teilchen. Ist Sauerstoff aber Bestandteil der Luft, einem Gemisch, so habe ich natürlich nicht nur die Teilchen vom Sauerstoff sondern auch die Teilchen vom Stickstoff, von den Edelgasen, vom Kohlendioxid usw. und eventuell von Verunreinigungen. Alles sind Teilchen, es gibt nichts anderes!

Häufig auftretende Fehler beim Teilchenmodell:

  • Die Eigenschaften eines Stoffes ergeben sich erst aus der Anhäufung von mehreren Teilchen. Die Anziehung der Teilchen untereinander ist natürlich auch bei zwei Teilchen vorhanden.
  • Ein kleinstes Teilchen hat keine Farbe. Die Farbe in den Elektronenmikroskop-Aufnahmen sind vom Computer erzeugt! Ein Farbeindruck entsteht dadurch, das ein Teil des weißen Licht durch den Gegenstand, den wir betrachten, verschluckt wird (Absorption). Das sichtbare Restlicht ergibt den Farbeindruck eines Gegenstandes (siehe Link zu einer deutschen Wikipedia-Seite Remission ). Und einzelne Teilchen können kein Licht zurückwerfen, da sie zu klein sind.

Nun gehen wir die Informationen zum Teilchenmodell kurz noch einmal durch.

      Schau dir den Film einmal an, bevor du weiterliest!

Vergleich der Teilchen

In jedem der Kästchen siehst du zwei Teilchen. Sie sollen verschieden sein, was durch die Farbe und einen Größen-Unterschied verdeutlicht wird. Wir werden uns bald noch mehr solcher Simulationen anschauen und daher muss klar sein, das die Farbe und die Größe nur dafür da sind um zu verdeutlichen, dass es nicht die gleichen Teilchen sind. Anhand der Größe könnte man natürlich auf die Masse schließen, was aber nicht erwünscht ist. Ebenso sind die Farben willkürlich gewählt, sind haben nichts nicht der Eigenschaften zu tun. Ebenso so verzichten wir darauf, die Form der Teilchen anderes dazustellen, obwohl du sicher weißt, dass es große und kleine Moleküle gibt. Wichtig ist nur: "Andere Teilchen gehören zu anderen Stoffen".


Der Aspekte der Anziehung der Teilchen

Die Anziehung ist unsichtbar, aber man kann bei den drei verschiedenen Teilchentypen, die ich da in der Simulation dargestellt habe, deutliche Unterschiede erkennen. Je stärker die Anziehung ist, desto mehr bleiben die Teilchen zusammen. Dabei ist die Anziehung aber nicht so wie bei einem Magneten: kommt ein Stück Eisen in die Nähe von einem Magneten wird es angezogen und hängt dann da fest. Aber wir haben ja die Grundregel, dass die Teilchen immer in Bewegung ist, auch wenn sie sich gegenseitig anziehen. Und so kann es vorkommen, dass sich die Teilchen mal wieder trennen.


      Lies dir hier zunächst einmal den ersten Abschnitt durch und schau dann den Film an!

Zusammenhang Temperatur und Teilchenbewegung

Wie schon erwähnt, sind die Teilchen immer in Bewegung. Der Film zeigt nur ein einzelnes Teilchen. Im Grund genommen gibt es das nicht, aber so verlieren wir nicht den Überblick. Wichtig zu wissen ist, dass die Temperatur zunächst keine Auswirkung auf das Teilchen hat, weil die Wärme (eine Energie-Art) nicht so einfach verloren geht. Erst die Interaktion mit den Wand führt zu einer veränderten Geschwindigkeit des Teilchen. Die Wände geben die Wärme/Energie an das Teilchen weiter oder nehmen Wärme/Energie vom Teilchen weg. Eigentlich müssten die Wände ja auch aus Teilchen bestehen, aber das missachten wir hier und sehen sie als eine Blackbox an, die die Fähigkeiten hat, die ich eben beschrieben habe.

Nun bitte den Film anschauen!

Okay, eigentlich ist das ja nichts Besonderes: je wärmer desto schneller ist ein Teilchen. Es ist nicht immer gleich schnell, denn die Aufnahme von der Wand bzw. die Abgabe an die Wand ist ein zufälliger Vorgang. In einer späteren Simulation mit mehreren Teilchen kommt das dadurch zustande, das ich viele Teilchen habe und die sich verschiedenen gegenseitig anstoßen oder abbremsen.

Schon mit dieser einfachen Überlegung kann man viele Dinge erklären.

  1. Wenn die Teilchen sich beim Abkühlen immer langsamer bewegen gibt es natürlich eine Temperatur, bei der sich die Teilchen nicht mehr bewegen. Kälter kann es dann nicht werden, da die Teilchen nicht langsamer sein können, als still zu stehen. Das wäre beim absoluten Nullpunkt bei etwa -273°C = 0°K (Kelvin).
  2. Wenn wir einen warmen Gegenstand anfassen, spüren wir an unserer Hand die Reibung der Teilchen. Je schneller die sich bewegen, desto mehr reiben sie an unserer Hand und diesen Unterschied können wir spüren, wenn wir unterschiedliche Temperaturen haben.
  3. Wir können so auch die Übertragung von Wärme erklären, denn warmes Wasser kann seine Wärme an das Metall abgeben, indem die schnellen Wasserteilchen an die Metallteilchen anstoßen und sie so zu einer schnelleren Bewegung bringen, was eine höhere Temperatur beim Metall bedeutet.

Und so weiter ...

Auf diese Art und Weise kann man weitere Phänomene rund um Wärme erklären. In diesem Fall ist es wichtig, das die von uns "von außen" zu messende Wärme (wird vom Thermometer angezeigt!) mit Hilfe der Teilchen (dem Inneren des Stoffes) erklärt werden kann. Solche Argumentationen werden gerne abgefragt, denn sie zeigen, wie gut ein Schüler diesen Zusammenhang verstanden hat. Was hier auch deutlich sein sollte: wir haben jetzt gerade nicht die Art der Teilchen betrachtet. Die Möglichkeit, dass große Moleküle sich in sich natürlich auch bewegen können (biegen, verdrehen) usw. stört hier nur.

Die Aggregatzustände im Teilchenmodell