Das Teilchenmodell und die Schmelz- und Siedetemperatur für Fortgeschrittene
Das wir und die ganze Materie um uns herum nicht aus einem kontinuierlichen Material bestehen, wie es ganz früher in der Antike und teilweise auch von Kinder gesehen wird, sollte inzwischen jedem klar sein. Natürlich fällt einem sofort das "Atom" ein, denn alles um uns herum besteht aus Atomen. Wenn wir in der Chemie von Teilchen sprechen, sind aber nicht immer die Atome gemeint. Denn wenn wir alles aus Atomen besteht stellt sich die Frage, warum sich die Stoffe so verschieden verhalten.
Tatsächlich sind die "Teilchen" die wir in der Chemie betrachten verschiedene Teilchen, die zwar auch einzelne Atome sein können oder aber auch zusammengesetzte Teilchen wie Moleküle oder geladene Teilchen wie Ionen. In vielen Fällen reicht es aus, sich ein einfaches Teilchenmodell vorzustellen, wobei zunächst unwichtig ist, was für eine Art von Teilchen es genau ist.
Das einfache Teilchenmodell
Für dieses einfache Teilchenmodell gelten folgende Regeln:
Grundregeln zum Teilchenmodell:
|
Wenn man diese Eigenschaften betrachtet, so sollte man sich klar machen, dass wir hier quasi Reinstoffe betrachten. Der Reinstoff Sauerstoff enthält eben nur eine Sorte von Teilchen (hier ein zweiatomiges Molekül). Andere Teilchen gibt es in dem Reinstoff nicht und dementsprechend gibt es zwischen den Sauerstoffteilchen keine andere Teilchen. Ist Sauerstoff aber Bestandteil der Luft, einem Gemisch, so habe ich natürlich nicht nur die Teilchen vom Sauerstoff sondern auch die Teilchen vom Stickstoff, von den Edelgasen, vom Kohlendioxid usw. und eventuell von Verunreinigungen. Alles sind Teilchen, es gibt nichts anderes!
Häufig auftretende Fehler beim Teilchenmodell:
- Die Eigenschaften eines Stoffes ergeben sich erst aus der Anhäufung von mehreren Teilchen. Die Anziehung der Teilchen untereinander ist natürlich auch bei zwei Teilchen vorhanden.
- Ein kleinstes Teilchen hat keine Farbe. Die Farbe in den Elektronenmikroskop-Aufnahmen sind vom Computer erzeugt! Ein Farbeindruck entsteht dadurch, das ein Teil des weißen Licht durch den Gegenstand, den wir betrachten, verschluckt wird (Absorption). Das sichtbare Restlicht ergibt den Farbeindruck eines Gegenstandes (siehe Remission ). Und einzelne Teilchen können kein Licht zurückwerfen, da sie zu klein sind.
Nun gehen wir die Informationen zum Teilchenmodell kurz noch einmal durch.
Schau dir den Film einmal an, bevor du weiterliest!
Vergleich der Teilchen In jedem der Kästchen siehst du zwei Teilchen. Sie sollen verschieden sein, was durch die Farbe und einen Größen-Unterschied verdeutlicht wird. Wir werden uns bald noch mehr solcher Simulationen anschauen und daher muss klar sein, das die Farbe und die Größe nur dafür da sind um zu verdeutlichen, dass es nicht die gleichen Teilchen sind. Anhand der Größe könnte man natürlich auf die Masse schließen, was aber nicht erwünscht ist. Ebenso sind die Farben willkürlich gewählt, sind haben nichts nicht der Eigenschaften zu tun. Ebenso so verzichten wir darauf, die Form der Teilchen anderes dazustellen, obwohl du sicher weißt, dass es große und kleine Moleküle gibt. Wichtig ist nur: "Andere Teilchen gehören zu anderen Stoffen".
Die Anziehung ist unsichtbar, aber man kann bei den drei verschiedenen Teilchentypen, die ich da in der Simulation dargestellt habe, deutliche Unterschiede erkennen. Je stärker die Anziehung ist, desto mehr bleiben die Teilchen zusammen. Dabei ist die Anziehung aber nicht so wie bei einem Magneten: kommt ein Stück Eisen in die Nähe von einem Magneten wird es angezogen und hängt dann da fest. Aber wir haben ja die Grundregel, dass die Teilchen immer in Bewegung ist, auch wenn sie sich gegenseitig anziehen. Und so kann es vorkommen, dass sich die Teilchen mal wieder trennen. |
Lies dir hier zunächst einmal den ersten Abschnitt durch und schau dann den Film an!
Zusammenhang Temperatur und Teilchenbewegung Wie schon erwähnt, sind die Teilchen immer in Bewegung. Der Film zeigt nur ein einzelnes Teilchen. Im Grund genommen gibt es das nicht, aber so verlieren wir nicht den Überblick. Wichtig zu wissen ist, dass die Temperatur zunächst keine Auswirkung auf das Teilchen hat, weil die Wärme (eine Energie-Art) nicht so einfach verloren geht. Erst die Interaktion mit den Wand führt zu einer veränderten Geschwindigkeit des Teilchen. Die Wände geben die Wärme/Energie an das Teilchen weiter oder nehmen Wärme/Energie vom Teilchen weg. Eigentlich müssten die Wände ja auch aus Teilchen bestehen, aber das missachten wir hier und sehen sie als eine Blackbox an, die die Fähigkeiten hat, die ich eben beschrieben habe. Nun bitte den Film anschauen! Okay, eigentlich ist das ja nichts Besonderes: je wärmer desto schneller ist ein Teilchen. Es ist nicht immer gleich schnell, denn die Aufnahme von der Wand bzw. die Abgabe an die Wand ist ein zufälliger Vorgang. In einer späteren Simulation mit mehreren Teilchen kommt das dadurch zustande, das ich viele Teilchen habe und die sich verschiedenen gegenseitig anstoßen oder abbremsen. Schon mit dieser einfachen Überlegung kann man viele Dinge erklären.
Und so weiter ... |
Auf diese Art und Weise kann man weitere Phänomene rund um Wärme erklären. In diesem Fall ist es wichtig, das die von uns "von außen" zu messende Wärme (wird vom Thermometer angezeigt!) mit Hilfe der Teilchen (dem Inneren des Stoffes) erklärt werden kann. Solche Argumentationen werden gerne abgefragt, denn sie zeigen, wie gut ein Schüler diesen Zusammenhang verstanden hat. Was hier auch deutlich sein sollte: wir haben jetzt gerade nicht die Art der Teilchen betrachtet. Die Möglichkeit, dass große Moleküle sich in sich natürlich auch bewegen können (biegen, verdrehen) usw. stört hier nur.
Die Aggregatzustände im Teilchenmodell
Ganz wichtig: Aggregatzustände können wir nur haben, wenn wir eine größere Menge an Teilchen haben.
- Vorab erst einmal ein Hinweis auf typische Fehler: Öfters bekommt man solche Formulierungen zu hören, wie "Das Teilchen ist flüssig" oder "gasförmige Teilchen". Das ist aber falsch, denn Teilchen in einer Flüssigkeit unterscheiden sich nicht von den Teilchen des gleichen Stoffes im festen Zustand. Was der Unterschied ist, werden wir uns gleich anschauen. Unter andren sind die Teilchen aber bei dem flüssigen Stoff schneller in Bewegung, denn um einen festen Stoff flüssig zu bekommen muss man ihn erwärmen.
Nun wieder zu einer Simulation. Wir beobachten hier viele Teilchen auf einmal. Die Änderung der Temperatur hat eine Änderung der Geschwindigkeit bei jedem einzelnen Teilchen zur Folge, wie auf ein einzelnes Teilchen, dass alleine ist. Allerdings kann man, je nach Anziehung der Teilchen und der Geschwindigkeit beachten, dass das Bild nicht immer das gleiche ist.
- Hinweis: Das die Teilchen nach unten fallen, bzw. sich eher weiter unten aufhalten hat damit zu tun, dass eine Schwerkraft simuliert wird. Wenn die ausgeschaltet wäre, würden auch langsame oder zusammenhängende Teilchen nicht "unten" liegen sondern herumschweben. Die Position der Teilchen hat also eher einen geringere Bedeutung.
Was zu beobachten ist:
Neben der Veränderung der Temperatur am Schieberegler kann man sich die Bewegung von einem einzelnen Teilchen anschauen: Bewegt es sich schnell/langsam? Bewegt es unabhängig von den anderen Teilchen oder stößt es öfters an andere Teilchen an?
Außerdem sollte man die Gesamtheit der Teilchen betrachten: Sind die Teilchen eng beeinander oder ist viel Platz zwischen ihnen? Wieviel Platz nehmen sie ingesamt ein? Sind sie geordnet oder ungeordnet?
Es fällt auf, dass es beim Aussehen der Teilchen deutliche Unterschiede gibt. Man kann im Grunde genommen drei verschiedene Arten der Anordnungen der Teilchen festhalten.
|
|
| ||
Bei sehr niedrigen Temperaturen ist die Bewegung der Teilchen sehr langsam. Die Teilchen sind ganz nah beieinander, haben eine feste Position und bewegen sich nur wenig an ihrer Stelle. Dies ist möglich, weil wegen der langsamen Geschwindigkeit, die Anziehung zwischen den einzelnen Teilchen gut wirken kann. Ein Film, bei dem man Teilchen in Bewegung sieht findest du hier. | Bei mittleren Temperaturen sind die Teilchen zwar auch recht eng beeinander, sind aber nicht - wie bei sehr niedrigen Temperaturen - fest an einer Stelle. Sie bewegen sich in aneinander vorbei, hin und wieder kann ein Teilchen mal die Gruppe verlassen. Da die Geschwindigkeit nicht so hoch wie bei den gasförmigen Soffen ist, kann die Anziehung zwischen den Teilchen etwas wirken, wodurch sie sich meist nicht voneinander entfernen können. Ein Film, bei dem man Teilchen in Bewegung sieht findest du hier. | Bei sehr hohen Temperaturen sind die Teilchen sehr schnell. Sie ziehen sich natürlich immer noch an, aber wegen der schnellen Bewegung kann die Anziehung kaum wirken. So sind die Teilchen weit im Raum verteilt. Ein Film, bei dem man Teilchen in Bewegung sieht findest du hier. |
Diese drei Zustände/Anordnungen kann man als Aggregatzustände des Stoffes (von dem wir hier die Teilchen haben) ansehen. Sie hängen von der Temperatur ab.